Using Pattern Recognition in Dividing Decimals

```
Author: Trish Dorr
Grade Level: 5th Grade
Subject: Math
CT Concept: Pattern Recognition
```


STANDARDS

CCSS.MATH.CONTENT.5.NBT.B. 7

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

LESSON OBJECTIVES / LEARNING TARGETS

Students will use place value reasoning and pattern recognition to solve decimal division problems.

MATERIALS / CURRICULUM

- Engage New York, Grade 5, Module 4 Lesson 29 (website) or Module 4 Lesson 29 (pdf in Google Drive)
- White boards and markers (one each per student)
- Eureka Math Workbook Modules 3\&4 (one per student) -- pages 301-302 (same as pages 10-11 in Lesson 29 pdf)
- Pattern Recognition Worksheet
- Active Inspire Flipchart for Lesson 29

VOCABULARY

- Pattern
- Tenths
- Hundredths
- Thousandths
- Decimal fraction
- Quotient

LESSON DESCRIPTION

Introduction:

- Introduce the Learning Target - We will use pattern recognition to solve decimal equations.

$$
5 \div \frac{1}{10} \quad 5 \div 0.1
$$

- Review the equivalence of these two expressions:
- Math warm-up on whiteboards
- Part One (Parts of a whole) -- Flipchart (FC) Page 3:
- How many tenths in 1 whole?
- How many tenths in 2 wholes?
- How many tenths in 3 wholes?
- What pattern are you seeing, here?
- How many tenths in 9 wholes?
- How did you use the pattern to predict the answer to this?
- How many tenths in 10 wholes?
- Part Two (counting by fractions) -- FC Page 4:
- $10=100$ tenths
- $20=\ldots \quad$ tenths
- $30=\ldots$ tenths
- $50=\ldots \quad$ tenths
- What pattern are you seeing, here?
- $70=$ \qquad tenths
- How can you use the pattern to predict the answer to this?
- $90=\ldots \quad$ tenths
- 91 =___tenths
- 92 = ___ tenths
- How has the pattern changed?
- $82=$ tenths
- $42=\ldots \quad$ tenths
- $47=\ldots \quad$ tenths
- Part Three (Dividing Fractions) -- FC Page 5:
- $2 \div 1 / 2$
- $3 \div 1 / 2$
- $8 \div 1 / 2$
- $5 \div 1 / 4$
- $7 \div 1 / 3$
- $1 \div 1 / 10$
- $2 \div 1 / 10$
- $10 \div 1 / 10$

Concept Development:

- Review the Learning Target -- :We will use pattern recognition to solve decimal equations.
- Flipchart Page 6 - Have students observe and comment on patterns they see.

Using Pattern Recognition in Dividing Decimals

- Digits move to the left on the place value chart as they grow larger
- All digits are multiplied by whole number
- Same number of zeros in product as in the factor that is the power of 10
- Flipchart Page 7 -- Have students observe and comment on patterns they see.

> What pattern do you notice?

$$
\begin{aligned}
7 \div 1 & =7 \\
7 \div 10 & =0.7 \\
7 \div 100 & =0.07 \\
7 \div 1,000 & =0.007
\end{aligned}
$$

- Digits move to the right on the place value chart as they grow smaller
- All digits are divided by a whole number
- Decimals move to the left as many place value column as there are zeroes in the problem
- Flipchart Page 8 -- Have students observe and comment on the differences between dividing and multiplying by powers of 10

Using Pattern Recognition in Dividing Decimals

Explain with as much detail as possible the difference between these two sets of equations:

$$
\begin{array}{rlrl}
7 \times 1 & =7 & 7 \div 1 & =7 \\
7 \times 10 & =70 & 7 \div 10 & =0.7 \\
7 \times 100 & =700 & 7 \div 100 & =0.07 \\
7 \times 1,000 & =7,000 & 7 \div 1,000 & =0.007
\end{array}
$$

When \qquad , then \qquad . . .

- Flipchart Page 9 -- Introduce "Problem 1" (of course, they have been doing plenty of building to get to this "first" problem...
- Problem 1: $7 \div 0.1$
- Relate this to $7 \div 1 / 10$
- Using what you know about patterns and division of fractions, predict which directions the digits will move on the place value chart.
- $7 \div 1 / 10=70$, so $7 \div 0.1=70$
- Flipchart Page 10-I DO

Problem 1: $7 \div 0.1$
What pattern do you notice?

$$
\begin{aligned}
& 7 \div 0.1=70 \\
& 7 \div 0.01 \\
= & 7 \div \frac{1}{100}=700 \\
& 7 \div 0.001 \\
= & 7 \div \frac{1}{1000}=7000
\end{aligned}
$$

- Fill out the place value chart, showing the movement of digits to the LEFT as you divide by increasingly smaller decimals ($0.1,0.01,0.001$)
- Flipchart Page 11 - WE DO

Using Pattern Recognition in Dividing Decimals

- Flipchart Page 12

Problem 3: $7.4 \div 0.1 \quad$Use the pattern you've noticed decimal equation the

- Flipchart Page 13
- Problem: $7.49 \div 0.01$
- Rewrite as division of fraction: $7.49 \div 1 / 100$
- Extend to $7.49 \div 0.001$

Partner Practice:

YOU DO

- Turn to Page 302 in your Modules 3 \& 4 Workbook
- Use Additional Worksheet provided
- Do the worksheet first to get comfortable using patterns to solve equations
- Explain what patterns you saw as you divided by tenths, hundredths and thousandths.
- After using the worksheet to solve decimal division equations, solve all of the problems in the number 2 table on Page 302.

Using Pattern Recognition in Dividing Decimals

- Extension: Solve the rest of the problems on Page 302 and do the division sentences on Page 301.
- As students are working, I will drop in to breakout rooms to help, starting with students who traditionally struggle with math. I will partner students with helpful peers, and offer additional support in the form of a small group aid for the one ESL student.

ASSESSMENT PLAN

- Were they able to use patterns to solve division equations?
- Were they able to explain what patterns they saw and describe them on the worksheet?

HOW WAS EQUITY CONSIDERED IN YOUR LESSON?

- I think math is difficult to think about culturally responsive practices except in the format of the lesson. It's a very teacher driven lesson to begin with, but they work in small groups to build understanding.
- Accommodations: Our ESL and IEP students will have additional support in the form of additional aids.

